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ILLUSTRATION O F  DESIGN METHODS FOR POWR 

REDUCTION I N  LOGICAL SYSTEMS 

by H. Allen C u r t i s  

Lewis Research Center 

SUMMARY 

Power consumption i n  space communications and telemetry systems can be 
reduced considerably by t h e  use of micropower t r a n s i s t o r  log ic  c i r c u i t s  and the  
incorporation of data  compression techniques. 
importance of the  conscientious use of systematic design procedures i n  t h e  opt i -  
mization of log ic  c i r c u i t r y  f o r  such systems i s  emphasized. 

I n  t h i s  repor t  t h e  addi t iona l  

The primary goal of t h i s  report  i s  t o  br ing t o  the  a t t e n t i o n  of logic  
designers many of t h e  usefu l  systematic methods developed i n  recent years. 
medium used t o  reach t h i s  goal i s  t h e  presentat ion of a design problem - the  
der ivat ion of a comparator u n i t  f o r  a telemetry da ta  system. It is  shown t h a t  
a judicious use of ingenuity and s y s t e m a t i c  methods affords  considerable sav- 
ings i n  both components and power over previous designs obtained by ingenuity 
alone. 

The 

INTRODUCTION 

Power requirements a r e  c r i t i c a l  i n  deep-space probes. This c r i t i c a l n e s s  
occurs because avai lable  s o l a r  power decreases as t h e  distance from the  Sun 
increases.  
f o r  the  logic  used i n  aerospace telecommunications systems can be afforded by 
the  use of micropower t r a n s i s t o r  logic  c i r c u i t s  ( ref .  1). 

It has been shown t h a t  a s u b s t a n t i a l  reduction of power consumption 

Usually i n  telecommunications systems continuous measurements a r e  made, 

Con- 
s tored,  and t ransmit ted back t o  Earth. There i s  a considerable waste of power. 
i n  s t o r i n g  and t ransmit t ing these data when they  a r e  highly redundant. 
sequently, a f u r t h e r  reduction of power consumption can be obtained whenever a 
major portion of the  redundancy i n  the data i s  removed before transmission. 
D a t a  compression has been offered as a means of achieving such a removal of 
data  redundancy ( r e f s .  2 and 3) .  

A t h i r d  means of reducing power consumption i s  provided by the use of 
design procedures t h a t  tend t o  minimize the  number of l o g i c a l  components nec- 
essary i n  telecommunications systems. This way, possibly because of i t s  ob- 
viousness, has not been s t ressed  enough. Therefore, the  invest igat ions of t h i s  
repor t  a r e  concerned s o l e l y  with the  use of l o g i c a l  design methods f o r  achieving 
reductions i n  power consumption. 
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I n  t h e  summer of 1964, as a p a r t  of an inves t iga t ion  of micropower log ic  
c i r c u i t s ,  a da ta  compressor w a s  being designed t o  i l l u s t r a t e  t he  use of r ecen t ly  
developed micropower log ic  modules (ref. 4 ) .  A request  t h a t  t he  author attempt 
t o  optimize t h e  l o g i c a l  design of a por t ion  of t he  compressor furnished t h e  
motivation f o r  t h e  study comprising t h i s  repor t .  

I I Predictor 

It i s  hoped t h a t  through t h i s  repor t  log ic  designers w i l l  be motivated t o  
inves t iga te  more extensively t h e  l i t e r a t u r e  f o r  new systematic procedures for 
solving t h e i r  design problems. 
su i ted  t o  the  so lu t ion  of t he  i l l u s t r a t i v e  problem a r e  exploi ted i n  t h i s  repor t .  
Besides these  procedures, which a r e  c i t e d  i n  t h e  reference sect ion,  a s m a l l  but  
basic  l i s t  of papers and books containing use fu l  design techniques i s  included 
i n  t h e  form of a bibliography. No attempt has been made t o  present r u l e s  f o r  
determining which methods a re  appropriate  for any given problems. Such de ter -  
minations can only be effectively'made by the  designer through h i s  experience 
with t h e  many methods. Invest igat ions on i t e r a t i v e  a r rays  of l o g i c a l  c i r c u i t s  
lend support t o  t h e  contention t h a t  t he re  e x i s t s  no general  s e t  of r u l e s  f o r  t he  
so lu t ion  of any log ic  design problem ( r e f .  5 ) .  
t he  references and bibliography should give t h e  designer an ins ight  i n t o  t h e  
appropriateness of methods t o  h i s  spec i f i c  problems. 

A few such procedures t h a t  a r e  p a r t i c u l a r l y  

Example problems presented i n  

I l y ,  t he  pred ic t ion  c r i t e r i o n  
required f o r  transmission i s  I 

DESCRIPTION OF TYPICAL DATA COMPRFSSOR 

Data Comparator - 
source + 

I n  t h e  basic  type of telemetry da ta  compressor shown i n  f igu re  1 the re  a r e  
three  major u n i t s  - a predic tor ,  a comparator, and a buffer .  I n  accordance with 
past  data  samples, t he  predictor  pred ic t s  t he  next da ta  sample. The comparator 
then compares the  l a t e s t  sample with the  predicted value t o  within an amplitude 
tolerance band def ining the  pred ic t ion  e r r o r  allowed f o r  t h e  accuracy spec i f ied  
by the  data  user .  If the  sample da ta  point  and t h e  predicted point  l i e  within 
the  tolerance band, t he  sample i s  considered redundant and i s  consequently 
discarded. If, however, t he  data  sample i s  outside t h e  tolerance band of t h e  
predicted value, it i s  re ta ined  and sent  along with a record of the  sampling 
time t o  t he  buf fer  f o r  l a t e r  transmission over t h e  data  l i nk .  

I n  a recent  study of pred ic t ion  
c r i t e r i a  it w a s  found t h a t  t h e  

Buffer -L Transmitter 
I 

The predic t ion  c r i t e r i o n  used i n  most compressors i s  a simple one. The 
predicted value i s  chosen t o  be equal t o  the  last  t ransmit ted sample. Hence, 

when t, p ,  and s stand f o r  t he  
r-------- 1 
I Data compressor 
I 

I 

~ - I  

tolerance,  t he  predicted point ,  
and t h e  sample point,  respect ive-  
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p -  buffer and s -  P 

T 
I Register 

L 

Comparator 

I 
I 

Serial subtractor 

From analog-to-digital converter 

L-----i 
Figure 2. - Block diagram of typical predictor and comparator. 

The s impl ic i ty  of the  c r i t e r i o n ,  
t < J p  - SI, i s  r e f l e c t e d  i n  t h e  f a c t  
t h a t  the  associated predictor  un i t  
requi res  a minimum of c i r c u i t r y .  It 
cons is t s  merely of a memory r e g i s t e r  
P containing the  binary representa- 
t i o n  of the  predicted value p and 
another r e g i s t e r  T containing t h e  
binary representat ion of t h e  tolerance 
t. Typically, P and T would have 
seven and t h r e e  b i t  capac i t ies ,  re- 
spectively.  Henceforth, they w i l l  be 
considered t o  have the  aforementioned 
capaci t ies .  Except f o r  t h e  purpose of 
comparing various s p e c i f i c  designs, 
t h e  use of generalized capac i t ies  
would not handicap ensming discussions.  

A comparator u n i t  which has been 
suggested f o r  such a data compressor 
( r e f .  2 )  cons is t s  of a seven b i t  
r e g i s t e r  D f o r  the  data  sample s, 
a s e r i a l  subtractor ,  a 2 ' s  complemen- 
t o r ,  and a tolerance gating network. 
This comparator, i l l u s t r a t e d  along 
with the  predictor  i n  f igure  2 ,  works 

as follows. Comencing with t h e  low-order b i t  pos i t ion  of both P- and - D ,  the  
difference p - s i s  sequent ia l ly  calculated by the  s e r i a l  subtractor .  The 
2 ' s  complementor derives t h e  difference s - p from the  output of the subtrac- 
t o r .  If the f i n a l  borrow eminating from the  subtractor  i s  a 0, then the  
difference p - s i s  nonnegative and hence equal t o  I p - S I  . However, if  
t h i s  borrow i s  a 1, then  the  difference p - s i s  negative, and 
s - p = Ip - S I .  The quant i t ies  t and Ip - S I  a r e  compared i n  the  tolerance 
gating network. If t i s  found t o  be l e s s  than 1p - S I  a t  t h e  end of t h e  
subtract ion process, then the  contents of P a r e  sent  t o  the buffer  and the  
contents of D t o  P. 

It should be noted i n  f i g u r e  2 t h a t  an analog-to-digi ta l  converter i s  t h e  
data source f o r  the  comparator. The converter,  using the  successive approxima- 
t i o n  technique ( r e f .  4 ) ,  works on an eight-clock pulse cycle. The f i rs t  seven 
pulses of the  cycle convert b i t  by b i t ,  high order f i r s t ,  t h e  data  sample s 
from i t s  analog form t o  i t s  binary representation. The eighth pulse i s  used t o  
read the  data sample s out of t h e  converter memory r e g i s t e r  i n t o  t h e  D 
r e g i s t e r  of t h e  comparator. The comparator u n i t  then uses the  converter clock 
source t o  perform i t s  funct ions while t h e  next data sample is  being converted. 

DEFICIENCIES O F  TYPICAL AND ALLIED ALTERNATIVE COMPARATOR DESIGNS 

If t h e  converter and t h e  comparator were synchronized, it i s  conceivable 
t h a t  t h e  data  sample s could be taken d i r e c t l y  from t h e  converter memory i n  
t h e  comparison process and t h e  D r e g i s t e r  could be eliminated. Synchronization 
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could be achieved by changing t h e  ana log- to-d ig i ta l  converter clock pulse cycle:  
The first seven pulses  could take care  of t h e  ana log- to-d ig i ta l  conversion of 
s. The converter could be id l e  during t h e  t i m e  of t h e  next seven pulses i n  
which t h e  comparator performs i t s  dut ies .  A f i n a l  pulse time would be used t o  
t r a n s f e r  p t o  t h e  buffer  and send t h e  contents of t h e  converter memory r e g i s -  
t e r  t o  P. I n  order t o  r e t a i n  the  same sampling rate as before,  t he  clock r a t e  
of t he  converter would have t o  be doubled. 
zat ion scheme impract ical  s ince doubling t h e  clock rate appreciably increases  
t h e  power consumption. 

This, however, makes t h i s  synchroni- 

Synchronization could a l s o  be achieved by designing an  analog-to-digi ta l  
However, converter t o  work from low order t o  high along with t h e  comparator. 

t h e  complexity of t h e  "look-ahead" c i r c u i t r y  required t o  allow analog-to- 
d i g i t a l  conversion from low order t o  high i s  s u b s t a n t i a l l y  grea te r  than t h a t  of 
t he  D r e g i s t e r ,  which could be saved. Thus, it i s  apparent t h a t  i f  synchro- 
n iza t ion  i s  t o  be obtained, t h e  comparator design r a t h e r  than the  converter 
design must be changed. 

The t y p i c a l  comparator w a s  designed by t h e  use of ingenuity i n  the  
assembling of well-known u n i t s  which a r e  found i n  computers ( s e r i a l  subt rac tor ,  
2 ' s  complementor, and two number s e r i a l  comparison u n i t ) .  "Ingenuity" methods 
as opposed t o  systematic methods can s imi l a r ly  be used t o  design a l t e rna t ive  
comparators t h a t  do permit synchronization and hence do not require  a 
r e g i s t e r .  Two such comparators a r e  described, and t h e i r  def ic ienc ies  are noted. 

D 

The f i rs t  comparator cons is t s  of a p a r a l l e l  subt rac tor  i n  which the  d i f fe r -  
ence t - ) p  - s ]  i s  calculated.  This ca lcu la t ion  i s  made e n t i r e l y  during t h e  
eighth pulse time of t he  converter cycle, when s i s  ava i lab le  i n  the  converter 
memory. This design does not require  a D r e g i s t e r  i n  t h e  comparator and a l s o  
el iminates  t h e  need f o r  c i r c u i t r y  t o  gate s e r i a l l y  t h e  contents of P, D, and 
T r e g i s t e r s .  Each s tage or pos i t ion  of such a p a r a l l e l  subtractor  is  of a 
complexity approximately equal t o  t h a t  of a s e r i a l  subt rac tor .  
p r e f e r a b i l i t y  of a p a r a l l e l  comparator over t h a t  of t h e  s e r i a l  comparator depends 
on the  number of s tages  of P. For t h e  t y p i c a l  seven s tages ,  the  p a r a l l e l  
comparator unit ,  even with the  aforementioned savings,  i s  more complex than the  
s e r i a l  comparator u n i t .  

Therefore, t he  

The second type of comparator i s  of t he  same s e r i a l  design as the  t y p i c a l  
one of f igu re  2 but works on an e ight  pulse cycle t h a t  occurs e n t i r e l y  during 
the  f i n a l  pulse t i m e  of t he  ana log- to-d ig i ta l  converter pulse cycle. Because 
t h e  complete s 
the  D r e g i s t e r  is  no longer necessary. The D r e g i s t e r  has been eliminated 
at the  expense of adding a clock source t o  t h e  comparator. J u s t  as increasing 
the  pulse r a t e  of t he  analog-to-digi ta l  converter subs t an t i a l ly  increased power 
consumption, so  does the  increasing of t h e  pulse r a t e  t o  t h e  comparator. Hence, 
t h i s  design o f fe r s  no p o s s i b i l i t y  f o r  improvement. 

information i s  ava i lab le  i n  t h e  converter memory a t  t h i s  time, 

A.NALYSIS O F  REQUImMENTS FOR AN OFTIMIZED COMPARATOR 

There have been developed i n  recent  years many algorithms or systematic 
procedures f o r  designing near ly  minimal or minimal l o g i c a l  networks. These 
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methods f o r  la rge  systems, unless obviously decomposable i n t o  a s e t  of simpler 
systems, a r e  usual ly  too  unwieldy t o  be pract icable .  With the  present s t a t e  of 
t he  ar t ,  therefore ,  ingenuity methods a r e  of ten  the  only means of designing 
la rge  complex systems. Designers, because of working almost e n t i r e l y  with la rge  
systems, f requent ly  overlook the  p o s s i b i l i t y  of applying methods other  than  
those based e n t i r e l y  on ingenuity when faced with smaller s ized system con- 
f igura t ions .  

The comparator u n i t  d e f i n i t e l y  fa l l s  i n t o  t h e  category of a s m a l l  system. 
Yet, it appears t h a t  u n t i l  now only ingenuity methods have been applied t o  
comparator u n i t  design. To apply one or more of t h e  systematic procedures t h e  
l o g i c a l  spec i f ica t ions  and requirements f o r  t h e  comparator must be converted 
from a verbal  t o  a more t r a c t a b l e  form. 

This form should i d e a l l y  be a mathematical model of t he  comparator. The 
model should define t h e  a c t i o n  of t he  comparator, and through t h i s  d e f i n i t i o n  
should revea l  t h e  fundamental s t ruc tu re  of t he  comparator. Such a model i s  
obtained when one represents  t he  comparator a s  a f i n i t e  s t a t e  sequent ia l  machine. 
This machine has a s e t  of inputs ,  an  i n i t i a l  s t a t e ,  ensuing s t a t e s ,  and an  
output.  The output merely permits t h e  t r a n s f e r  of p t o  t h e  buffer  and of s 
from t h e  converter r e g i s t e r  t o  P whenever t h e  r e l a t i o n  t < Ip - S I  i s  
s a t i s f i e d .  The inputs  t o  t h e  machine a r e  the  data from t h e  T and P r e g i s t e r s  
of the  predictor  and from t h e  memory of t he  ana log- to-d ig i ta l  converter; t h i s  
l a t t e r  memory w i l l  henceforth be r e fe r r ed  t o  as the  S r e g i s t e r .  For synchro- 
n iza t ion  of the  machine and t h e  converter,  these inputs  a r e  t o  be s e r i a l l y  
gated, b i t  pos i t ion  by b i t  pos i t ion ,  high order f i rs t .  Figure 3 provides a 
block diagram of t he  sequent ia l  machine descr ip t ion  of t h e  comparator. 

Let t k ,  pk, and Sk represent  t he  binary information contained i n  t h e  k t h  
pos i t ion  ( 0  < k < 6 )  of t h e  T, P, and S r e g i s t e r s ,  respect ively.  The four  
high-order p&it ions of T do not e x i s t .  However, f o r  uniformity it i s  con- 
venient t o  consider T as a seven pos i t ion  r e g i s t e r  with t3 ,  t 4 ,  t 5 ,  and t6 
understood t o  be 0. There a r e  c l e a r l y  e ight  d i s t i n c t  sequences of inputs  
[ t k ,  pk, Sk) t h a t  could be gated i n t o  the  machine: (0,0,0), [0,0,1), [0,1,0), 
{0,1,1)> (1,0,0), {l,O,U, ( 1 , 1 , 0 ) y  and {1,1,1). 

The binary representat ions of the  tolerance,  t h e  predicted value, and t h e  

6 
sample value a re  given by 

t = c Z i t i  
i =O 

Inputs 

output 
P 

Register Machine (states) p -  buffer 
S and s -  P 

R ey i s t e r 

Figure 3. - Block diagram of comparator represented as a sequential 
machine. 

6 

i =O 
p = 2tpi 

6 

i =O 
s = c 2iSi  
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The f i r s t  pulse of each eight-clock pulse conversion cycle serves both t o  
derive S6 i n  S and t o  i n i t i a l i z e  t h e  machine t o  i t s  i n i t i a l  s t a t e .  The 
second pulse,  besides  der iving s5 ,  gates  t h e  inputs  { t 6 ,  p6, s6} i n t o  t h e  
machine which subsequently goes i n t o  a new s t a t e .  Similarly,  t he  (8 - k ) t h  
converter clock pulse gates  t he  inputs  { t k ,  R, Sk} i n t o  t h e  machine, and t h e  
,machine then assumes another new s t a t e .  

The information t h a t  has thus far been gated i n t o  t h e  machine i s  
t h a t  held i n  t h e  high order 7 - k pos i t ions  of T, P, and S. This 
i s  given by t h e  p a r t i a l  representat ions 

precise  lg 
informat ion  

from which it i s  evident t h a t  
t he  ,machine c a r r i e s  information about Tk, flk, and ok and about how they a r e  
r e l a t ed  i n  regard t o  t h e  eventual s a t i s f a c t i o n  of t he  r e l a t i o n  
After t h e  e ighth  pulse t h e  f i n a l  s t a t e  of t h e  machine determines the  output 
condition enabling or i nh ib i t i ng  the  transmission of p t o  the  buffer  and s 
t o  P. The f irst  pulse of t he  next cycle, i n  addi t ion  t o  performing t h e  funct ions 
previously described, provides t h e  time i n t e r v a l  f o r  t h i s  transmission i f  it i s  
enabled . 

T~ = t, flo = p, and oo = s .  The new s t a t e  of 

t < Ip - S I .  

To transform completely the  verbal  descr ip t ion  of t he  machine i n t o  a 
mathematical model of t he  comparator, t h e  precise  nature of each of t h e  possible  
s t a t e s  of t h e  machine must be derived. To f a c i l i t a t e  the  der ivat ion,  th ree  
theorems concerning r e l a t i o n s  of Tk, flk, and ok t o  t < 1 p - S I  w i l l  now 
be presented. These r e l a t i o n s  a r e  those which the  s t a t e s  of the machine m e  
t o  convey. 

Theorem 1: 

Proof: 

For k = 0, the  theorem i s  t r i v i a l l y t r u e  since 

To + 2 - 2 < I f lo  - ool 

i s  prec ise ly  
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According t o  the  hypothesis, 

Tk + zk+l  - 2 < - okl 

Then 

Tk + Zk - 1 < )7[k okl - Zk + 1 

Given Tky the  maximum value t h a t  t can a t t a i n  i s  Tk + zk - 1: 

k-1 . 
tmax = ‘k + c 2 1 = T  k + 2 k - 1  

i =O 

Likewise given Iflk - ak., the  m i n i m u m  value t h a t  1p - S I  can a t t a i n  i s  

1‘k - ‘kl 
k - 2  +1: 

6 6 .  k-1 
= I C zipi - c 21si  + c 2 q p i  - S i > ]  

i =k i =k i =O 

Thus, t,,, < lp - slmin, and it follows t h a t  

Theorem 2 : 

t < Ip - S I .  

If Tk > Ink - akl + Zk - 1, then t > J p  - S I .  
Proof:  

For k = 0, the  theorem i s  t r i v i a l l y  t r u e  because 

‘0’ Iflo - 001 + 1 - 1 i s  exac t ly  t > Ip - S I .  

By the  hypothests, 
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‘tk > Ink - okl + Zk - 1 
Given Tk, t h e  minimum value that t can a t t a i n  i s  Tk s ince 

k-1 

or 
bin = Tk 

Similarly,  given Ink - ‘kl, t he  maximum value t h a t  Ip - S I  can a t t a i n  i s  

Therefore, %in > I p - slmaxj consequently, t > I p - S I  

THEOREM 3 :  

where a, is a nonnegative integer .  Similar ly ,  
6 

I ‘k - ‘kl = 2kl 2 t - q p i  - Si)l = 2kp 
1= 

where p i s  a nonnegative integer .  The hypothesis can be rewr i t ten  as 

2kp - 2k+l + 2 < 2% < 2kp + 2k - 1 - - 
The maximum in teger  a, sa t i s fy ing  the  hypothesis i s  c l e a r l y  P,  and t h e  minimum 
in teger  a i s  p - 1. Therefore, there  are only two values of a possible ,  
and corresponding1 s ince 2kp = I X ~  - ukl , Tk = [fik - or  
Tk = Ink - Ok! - ZkY: For t he  case k = 0, it should be noted t h a t  only  one 
value i s  possible:  t = ( p  - “1 
8 



Theorems 1 and 2 r evea l  t h e  conditions necessary f o r  t h e  s a t i s f a c t i o n  of 
t h e  r e l a t i o n s  t < J p  - S I  and t > Ip - SI ,  respec t ive ly .  With each of these 
r e l a t i o n s  the re  i s  associated a d i s t i n c t  state of t he  machine. I n  pa r t i cu la r ,  
l e t  the s t a t e  character ized by t h e  s a t i s f a c t i o n  of be r e fe r r ed  t o  
as state 1. Likewise, t h e  s t a t e  associated with t > Ip - SI w i l l  be ca l led  
state 2. Theorem 3 provides information about addi t iona l  r e  a t ions  t h a t  must be 
s a t i s f i e d  by t h e  machine i n  i t s  other  possible  s t a t e s .  
drawn by examining the three theorems are t h e  following: 

t C ] p  - S I  

Conclusions t h a t  can be 

(1) For any clock pulse cycle,  once t h e  machine has reached e i t h e r  state 1 
or  s t a t e  2, it cannot change t o  a d i f f e r e n t  state regard less  of f u r t h e r  sequences 
of inputs  . 

( 2 )  Since the  i n i t i a l  s t a t e  of t h e  machine i s  t h e  state occurring before 
any sequences of inputs  have been gated i n t o  t h e  machine, it can convey no in-  
formation regarding whether or not t < Ip - s i  o r  t > ( p  - s i .  Therefore, 
t h e  i n i t i a l  state must be one of those associa  ed with the  r e l a  ions t r e a t e d  i n  
theorem 3. 

(3) If, a f t e r  a l l  of t h e  input sequences have .occurred, t h e  machine i s  not 
i n  s t a t e  1 or state 2,  then  t = / p  - S I  . 

The proper t ies  of t h e  s t a t e s  associated with the  r e l a t i o n s  Tk = Ink - okl 
and Tk = Ink - okl - 2k a r e  now invest igated.  The former r e l a t i o n  represents  
a c l a s s  containing th ree  simpler r e l a t i o n s :  

Tk = ok - flk > 0 

Similar ly ,  Tk = Ink - % I - zk represents  a class of two simpler r e l a t i o n s :  

L e t  t he  s t a t e  of t he  machine fo r  which t h e  f i rs t  of these f i v e  simple r e l a t i o n s  
i s  s a t i s f i e d  be ca l l ed  s t a t e  3. Similar ly ,  assoc ia te  with t h e  other  four  
r e l a t i o n s  the  s t a t e s  4, 5, 6,  and 7, respect ively.  Whether or not t he  machine 
can be described by fewer s t a t e s  w i l l  be determined l a t e r  as p a r t  of t h e  design 
procedure. 

If t h e  present r e l a t i o n  and s t a t e  of t h e  machine a re  Tk = nk - ak = 0 
and 3, respec t ive ly ,  when t h e  sequence ( tk-1,  pk-1, Sk-1) i s  gated i n t o  t h e  
machine, then t h e  next r e l a t i o n  and state can be determined by t h e  use of the  
recursion formulas: 
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Input s e que nee 

tk-: 

0 

0 

0 

0 

1 

1 

1 

1 

- %-I ~ 

0 

0 

1 

1 

0 

0 

1 

1 

~ 

‘k-1 

Next r e l a t i o n  

~ 

[ext 
i t a te  

3 

7 

6 

3 

2 

5 

4 

2 

TABLE 11. - PRFSENT STA!I’E 4 AND PRESENT RELATION 

T k = ’ [ k  - L l k > o  

Input  sequence 
- 

tk-l 

0 

0 

0 

0 

1 

1 

1 

1 

- 

- 

%-1 

0 

0 

1 

1 

0 

0 

1 

1 
- 

0 

1 

0 

1 

0 

1 

0 

1 
~ 

Next r e l a t i o n  e x t  
tat€ 

4 

2 

6 

4 

2 

2 

4 

2 
~ 

The r e s u l t  of such a determination 
i s  given i n  t a b l e  I. 

I n  a l i k e  manner t a b l e s  r e -  
l a t i n g  successive s t a t e s  of t h e  
machine a re  derived f o r  states 4, 5, 
6,  and 7. For completeness they a re  
presented i n  t a b l e s  I1 t o  V. 

From these  t a b l e s  and t h e  con- 
c lusions drawn from t h e  th ree  
theorems another t ab le ,  which r e l a t e s  
present s t a t e ,  next s t a t e ,  and out- 
put when input sequences a r e  applied 
t o  t h e  machine, i s  d i r e c t l y  derivable.  
I f ,  a t  t h e  time of t h e  f i n a l  pulse 
of t he  cycle,  t h e  machine i s  i n  s t a t e  
1, 6,  or 7, then t h e  t r a n s f e r  of p 
t o  t h e  buffer  and of s t o  P i s  
enabled. The enabling output con- 
d i t i o n  of t he  machine i s  indicated 
i n  t h e  t a b l e  by t h e  presence of a 
1 i n  the  output column. This 
t a b l e  provides the  sought f o r  math- 
ematical  representa t ion  of t h e  
comparator and i s  a spec i f i c  example 
of a flow t a b l e  representat ion of a 
f i n i t e  s t a t e  sequent ia l  machine 
( r e f s .  6 and 7 ) .  

SYSTEMATIC DESIGN PROCEDURE 

A n  important s t ep  i n  t h e  de ign 
of sequent ia l  machines i s  the  as- 
signment of binary var iab les  t o  rep- 
resent  t he  i n t e r n a l  s t a t e s  of t he  
machines. The problem of determin- 
ing economical s t a t e  assignments f o r  
sequent ia l  machines has been studied 
r a the r  extensively ( r e f s .  7 t o  9 ) .  
These inves t iga t ions  have been 

motivated by the  f a c t  t h a t  d i f f e ren t  assignments r e s u l t  i n  d i f f e r e n t  l o g i c a l  
r e l a t i o n s  with corresponding va r i a t ions  i n  t h e  complexity of hardware implementa- 
t i ons .  Resulting from these inves t iga t ions  a r e  methods t h a t  systematical ly  
produce assignments i n  which each binary var iab le  descr ibing the  new s t a t e  
depends on as f e w  var iab les  of the  old s t a t e  as possible .  

The f i r s t  s t e p  i n  the  systematic design of t he  comparator cons is t s  of 
applying the  method of D r .  Juris Hartmanis ( r e f .  7 ) .  This method frequent ly  
w i l l  not y i e ld  var iab le  assignments i n  which dependence i s  reduced t o  the  great- 
e s t  extent .  However, t he  method has the  advantage t h a t  i t s  camputation i s  s l i g h t  

10 



TABLE 111. - PRESENT STATE 5 AND PFWXENT R F W I O N  

nput sequence 
~ 

k-1 

0 

0 

0 

0 

1 

1 

1 

1 

- 

k-1 

3 

3 

1 

1 

0 

0 

1 

1 

- 
k-1 

0 

1 

0 

1 

0 

1 

0 

1 

- 
ext 
t a t€  

TABLE IV. - PRESENT STATE 6 ANE PRESENT R E L A T I O N  

Tk = flk - Uk - Zk 

[nput sequence 

- 1 

0 

0 

0 

0 

1 

1 

1 

1 

’k-1 

0 

0 

1 

1 

0 

0 

1 

1 

- 

k-1 

0 

1 

0 

1 

0 

1 

0 

1 

Next r e l a t i o n  lext 
;tat6 

1 

6 

1 

1 

6 

4 

1 

6 
- 

f o r  machines having few s t a t e s  and 
t h a t  it a l s o  determines w h a t  s t a t e s ,  
i f  any, a r e  redundant. Furthermore, 
one can bypass much of t h e  computa- 
t i o n  and s t i l l  obtain valuable in -  
s igh t  i n t o  t h e  fundamental s t ruc tu re  
of t h e  machine. This l a t t e r  in for -  
mation can then be used t o  assess  
t h e  mer i t s  of assignments obtained 
by more complex methods. 

The execution of t h i s  method 
permits one t o  determine t h e  
exis tence of assignments of binary 
var iab les  i n  which a subset of these  
var iab les  can be calculated independ- 
e n t l y  from t h e  remaining var iab les .  
The exis tence of such assignments i s  
c lose ly  connected with the  exis tence 
of p a r t i t i o n s  with the  subs t i t u t ion  
property.  Since the  p a r t i t i o n  with 
the  subs t i t u t ion  property i s  t h e  
main t o o l  of t he  method, it would be 
wel l  t o  provide a somewhat de t a i l ed  
d e f i n i t i o n  of t h i s  e n t i t y .  A block 
i s  a subset of t h e  s e t  of s t a t e s  of 
a sequent ia l  machine M. A p a r t i t i o n  
i s  a union of blocks such t h a t  every 
s t a t e  of M i s  included once and 
only once. A p a r t i t i o n  p on t h e  
s e t  of s t a t e s  of a sequent ia l  machine 
M i s  said t o  have the  subs t i t u t ion  
property w i t h  respect  t o  M i f ,  f o r  
any two s t a t e s  contained i n  the  same 
block of p, t h e i r  next s t a t e s  w i l l  
again be contained i n  a common block 
as long as t h e  same input w a s  appl ied.  
(Hartmanis uses the  symbol n: i n -  
s tead of p. For purposes of avoid- 
ing  ambiguity, t he  choice of p f o r  
t h i s  repor t  i s  preferab le . )  Note 
tha t  the  p a r t i t i o n  - - - - - -  

= {I 2 3 4 5 6 7) has t h e  subs t i t u t ion  property with respect  t o  the  comparator 
Clearly,  t h e  s t a t e s  1 and 2 contained 

p 1  
as given by - i t s  flow t a b l e  representat ion.  - 
i n  block 1 2 a r e  again contained i n  1 2  with t h e  appl ica t ion  of any input 
sequence; none of t he  other  blocks contains more than  one s t a t e .  The computa- 
t i o n a l  scheme quickly y ie lds  the  other  p a r t i t i o n s  with the  subs t i t u t ion  property 

- - -  
p 2 = { 1 2 4 6 3 5 7 )  

p3 = {I 2 5 7 3 4 6) 
- - -  
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TABLE V. - PRESENT STATE 7 AND PRESENT RELATION 

000 

Input sequence 

001 010 011 100 101 110 111 

tk - l  4c-1 

~ 

’k-1 

Tk = Uk - nk - zk 
-~ 

Next r e l a t i o n  Next 
s t a t e  

1 

1 

7 

1 

7 

1 

5 

7 

TABLE VI .  - FLOW TABU Rl3PRESENTATION OF COMPARATOR 

5 7  

1 I 1 1  

- 

1 

2 

6 

6 

2 

1 

7 
- 

~ 

1 

2 

3 

4 

5 

1 

1 
- 

~ 

1 

2 

2 

2 

2 

6 

7 
- 

~ 

1 

2 

5 

2 

5 

4 

1 
- 

1 

2 

4 

4 

2 

1 

5 
- 

1 

2 

2 

2 

2 

6 

7 
~ 

outpui 

1 

0 

0 

0 

0 

1 

1 
_ _ _ _ ~  - 

P4 = 

P5 = 

(1 2 5 7 n E j  

I 1 2 4 6  
- 
3 5 7) 

The f a c t  t h a t  no non t r iv i a l  
block (more than one state) con- 
t a ined  i n  any of these p a r t i t i o n s  
i s  such t h a t  a l l  i t s  states have 
t h e  same  output means t h e  compara- 
t o r  has no superfluous s t a t e s .  
Therefore, t h e  derived s e t  of 
states i s  minimal. 

A simple calculat ion,  based 
on the  proper t ies  of t he  six p a r t i -  
t i o n s  wi th . the  subs t i t u t ion  prop- 
e r t y ,  revea ls  t h a t  t he  bes t  assign- 
ment obtainable by the  method i s  
one requi r ing  four  binary var iab les  
t o  represent  each s t a t e .  If f 
and F ( j  = 0,1,2,3) a r e  used 
t o  represent  t he  old and new s t a t e  
var iab les ,  respect ively,  then t h e  
old and new state var iab les  f o r  t h e  
bes t  such assignment a re  r e l a t e d  
func t iona l ly  as follows: 

3 
j 

Assignments t h a t  have no reduced 
dependence requi re  only th ree  binary var iab les  t o  represent  each s t a t e .  
each of these assignments 

For 

FO = g ( f  0 0.’ f 1’ f 2’ t kYPkjsk) 

The appl ica t ion  of a cos t  estimate procedure t o  t h e  two s e t s  of switching 

1.2 



funct ions (ref. 10) shows t h a t  t he  l a t t e r  assignment i s  preferable .  Cost i n  
t h i s  procedure i s  defined as t h e  number of l o g i c a l  components required.  The 
f a c t  t h a t  there  i s  a c lose  r e l a t i o n  between t h e  number of components and t h e  
amount of power consumed j u s t i f i e s  t h e  use of such a procedure. 

The design procedure i n  i t s  t h i r d  s t e p  cons is t s  of applying a more general  
method ( r e f .  8)  t o  obta in  economical s t a t e  assignments. Using t h i s  method, one 
can de tec t  f o r  any machine M a l l  assignments t h a t  have reduced s t a t e  var iab le  
dependence. P a r t i t i o n  p a i r s ,  general izat ions of p a r t i t i o n s  with t h e  subs t i t u -  
t i o n  property, a r e  the  p r inc ipa l  instruments used i n  t h i s  method t o  discover 
assignments with reduced dependency. A p a r t i t i o n p a i r ( p , T )  on the  s t a t e s  of a 
sequent ia l  machine M i s  an ordered p a i r  of p a r t i t i o n s  on the  s e t  of s t a t e s  
such t h a t  i f  s t a t e s  S i  and S.J belong t o  t h e  same block of p, then f o r  each 
input sequence I, I S i  and I S j  are i n  the same block of (ISi i s  t h e  s t a t e  
t h e  machine goes i n t o  from S i  when the  input I i s  appl ied) .  When p = E ,  
t h e  de f in i t i on  of a p a r t i t i o n  pa i r  reduces t o  t h a t  of a p a r t i t i o n  with the  
subs t i t u t ion  property. To determine a l l  p a r t i t i o n  p a i r s  f o r  t he  comparator 
from i t s  flow t a b l e  i s  r e l a t i v e l y  easy, although na tu ra l ly  more d i f f i c u l t  than  
merely f inding the  p a r t i t i o n s  with t h e  subs t i t u t ion  property. I n  t h e  s e t  of a l l  
such p a r t i t i o n  p a i r s  t he re  a r e  four  t h a t  imply assignments which have reduced 
dependence and requi re  only three  var iab les  t o  represent  each state. These four  
p a i r s  a r e  as follows: 

---- N 

(p7 = (1 6 2 4 3 5 7 ) ,  p7 = (1 2 4 6 3 5 7 ) )  
--- 

(ps = (1 7 2 5 3 4 cj, = (1 2 5 7 3)) 
---- - 

(pg = (1 6 2 5 3 4 7 3 ,  p9 = (1 3 4 6 2 5 7 ) )  

---- N 

= (1 7 2 4 3 5 6 ) ,  pl0 = (1 3 5 7 2 4 6 ) )  ( p10 

Such assignments have t h e  sought a f t e r  maximum reduct ion of dependency among 
the  new and old s t a t e  var iab les .  
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The assignment corresponding t o  the f i r s t  s e t  of two p a r t i t i o n  p a i r s  i s  
constructed as follows: 
Fo f o r  the  new) of each s t a t e  t h e  p a r t i t i o n  E7 by l e t t i n g  t h i s  var iable  be 
1 f o r  each s t a t e  i n  t h e  1 2 4 6 block and l e t t i n g  it be 0 f o r  each of the  
s t a t e s  i n  3 5 7. I n  a s i m i l a r  way t h e  second var iab le ,  f l  or F1, of each 
s t a t e  i s  associated with the  p a r t i t i o n  E8. The values of the  t h i r d  var iab le ,  
f 2  or F2, are obtained by associat ing p7 with both the f i rs t  and t h i r d  
var iable  and by assoc ia t ing  p 8  with both second and t h i r d  var iables .  The 
r e s u l t i n g  assignment i n  tabular  form i s  as follows: 

Associate with t h e  f i rs t  var iable  (fo f o r  t h e  old and 

f2 fl f o  F2 F1 Fo 
Present stat e l + l  1 1  Next s t a t e  1 - 1  1 1  

2-30 1 1  2-30 1 1  

3 + 0  0 0 3 - 3 0  0 0 

4 + 0  0 1 4 - 0  0 1 

51.0 1 0  5 - 0  1 0  

6 + 1  0 1 6 - 1  0 1 

7 - 1  1 0  7 + 1  1 0  

Subst i tut ion of these  binary var iables  i n  the  flow t a b l e  representat ion of the 
comparator yields  a t r u t h  t a b l e  f o r  the binary functions Fo, Fly and F2. 

The f i n a l  s t e p  of t h e  design procedure i s  accomplished when the functions 
Fo, F l y  and F2 a r e  s implif ied i n  t h e i r  l o g i c a l  forms. Before the  last  s t e p  
i s  begun, it would be wel l  t o  mention what kinds of l o g i c a l  switching elements 
a r e  t o  be used i n  the  hardware r e a l i z a t i o n  of the  comparator. All t'nese 
elements, t o  conserve power, a r e  micropower t r a n s i s t o r  c i r c u i t s .  The memory 
elements a r e  r e s e t - s e t  f l i p - f l o p s  ( r e f .  11). The basic  logic  elements a r e  
NAND, NOR, and EXCLUSIVE NOR. The NAND and NOR elements can have one t o  f i v e  
inputs,  whereas t h e  EXCLUSIVE NOR element always has no more than two inputs.  
I n  f igure  4 a r e  shown t h e  symbolic representat ions of t h e  four  aforementioned 
c i r c u i t s .  To each of these c i r c u i t s  i s  assigned a value r e f l e c t i n g  the  amount 
of power required t o  operate it ( r e f .  1). Each f l i p - f l o p  or EXCLUSrVE NOR 
element i s  given a value of 2, but the  NAND and NOR elements, regardless  of 
the  number of inputs,  have a value of 1 each. 

The f l i p - f l o p  c h a r a c t e r i s t i c  
- equation i s  c c  ~ ,+; 1 a+b$e && F = S + R .  f 

Initialize where R and S a r e  the  r e s e t  and 
a b  s e t  inputs t o  the  f l i p - f l o p ,  f i s  P C  a b c d e  a b c d e  

8 %  d 

NAND NOR ExclusiveNOR the  old s t a t e ,  F i s  the new s t a t e ,  Reset - set 
flip-flop + i s  the  OR operation, - i s  t h e  AND 

operation, and - i s  the complementa- 
t i o n  operation. Since 

Figure 4. - Symbolic representation of micropower logic elements. 
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From the 
SO and 
and R o y  
i s  made, 

t r u t h  t a b l e  f o r  
RO ( r e f .  11). 
they can both be selected t o  be independent of fo.  Once t h i s  se lec t ion  
then 

Fo it i s  a simple matter t o  determine t h e  functions 
Because of the  many "don't care" conditions f o r  So 

Ro = 0 

The use of decomposition techniques ( r e f .  10) provides the  f i n a l  s implif ied 
form of so: 

where 0 i s  the  EXCLUSIVE OR operation. 
f o r  F1 and F2 a r e  found t o  be 

Similarly,  t h e  s e t  and r e s e t  functions 

The hardware r e a l i z a t i o n  of the  comparator, corresponding t o  these l o g i c a l  
r e l a t i o n s ,  i s  shown i n  f igure  5. Tabulated at the  r i g h t  of the c i r c u i t  a re  the  
power consumption values. The t o t a l  power consumption value of the  optimized 
comparator i s  23. To indicate  the  improvements afforded by the use of system- 
a t i c  design methods combined with ingenuity, the  hardware r e a l i z a t i o n  of the  
t y p i c a l  comparator u n i t  i s  shown i n  f igure  6 f o r  comparison. To obtain a power 
consumption value as low as 36 required t h e  r e s t r i c t i o n  t h a t  t h e  tolerance 
could only assume c e r t a i n  values; t h e  permitted values e s s e n t i a l l y  specify the  
number of b i t s  of precis ion desired.  
of c i r c u i t  s impl i f ica t ion  t h e  t y p i c a l  comparator requires  about 60 percent more 
power than does t h e  optimized comparator. Moreover, if the  r e g i s t e r s  P, D, 
and S had been given la rger  capac i t ies ,  t h e  savings i n  power would have been 
even more s t r i k i n g .  For instance,  i f  each of the  aforementioned r e g i s t e r s  had 
had twelve s tages  instead of seven, t h e  power consumption value of the  t y p i c a l  
comparator would have grown t o  46 while the  value associated with the optimized 
comparator would have remained f ixed  a t  23. 

Even with t h i s  r e s t r i c t i o n  f o r  purposes 
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p - buffer 
and s - P  

0 

- 
p s  p s  t t 

Figure 5. - Hardware realization of optimized comparator. 

1 0  10  1 0  1 0  1 0  10 1 

p -  buffer and s -  P 

0 1 0  1 

nitialize 4 

0 1  
Ini- 

values 

6 

6 

6 

3 

2 
23 
- 

Paver 
consumption 

values 

1 

2 

4 

2 

2 

2 

1 

2 

1 

3 

16 
36 
- 

Figure 6. - Hardware realization of typical comparator. 
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If one were t o  execute the f i n a l  s t e p  of t h e  design procedure after making 
t h e  assignment of state var iab les  based on t h e  second s e t  of p a r t i t i o n  pa i r s ,  
he would obtain a comparator whose power consumption value i s  24. Therefore, 
t h e  assignment which was chosen f o r  i l l u s t r a t i o n  does indeed lead  t o  the  b e t t e r  
hardware r ea l i za t ion .  

It is  i n t e r e s t i n g  t o  note t h a t  t h e  appl ica t ion  of t h e  r ecen t ly  published 
method of Drs. T. A. Dolotta and E. J. McCluskey ( r e f .  1 2 )  t o  t h e  comparator 
design problem yie lds  p rec i se ly  t h e  c i r c u i t  i l l u s t r a t e d  i n  f igu re  5. Their 
methods a re  of e spec ia l  importance because they  can be applied t o  much l a rge r  
systems than could methods previously devised. For s m a l l  systems t h i s  method 
does have one d e f i n i t e  drawback. Assignments obtained by this  method correspond 
t o  p a r t i t i o n s  chosen s e r i a l l y .  Each p a r t i t i o n  i s  l o c a l l y  t h e  bes t  a t  each s t e p  
of t h e  process. However, s e t s  of p a r t i t i o n s  chosen t o  i n t e r a c t  t h e  bes t  
g loba l ly  will always provide t h e  bes t  assignment. Thus, assignments based on a 
s e r i a l  s e l ec t ion  of p a r t i t i o n s  w i l l  only be t h e  bes t  when they ca inc identa l ly  
i n t e r a c t  t he  bes t  globally.  

CONCLUDING REMARKS 

By judiciously combining ingenuity and t h e  use of systematic design proce- 
dures a comparator whose power consumption i s  considerably l e s s  than any previ-  
ously b u i l t  has been derived. This comparator has an added advantage i n  t h a t  
it permits a grea te r  binary reso lu t ion  of tolerances spec i f ied  by the  user.  
This optimized comparator has t h e  addi t iona l  f ea tu re  t h a t  i t s  power consumption 
does not increase f o r  da ta  samples of grea te r  precis ion.  
a r e  of secondary importance compared t o  t h a t  of bringing t o  the  a t t e n t i o n  of 
log ic  designers t he  many systematic design procedures t h a t  have been developed 
i n  recent  years. 

These r e s u l t s ,  however, 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, Ju ly  13, 1965. 
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